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A B S T R A C T

Although wetlands are widely recognized for thier important role in providing ecosystem services, their
abundance, spatial extent, and condition remain poorly constrained and at-risk of decline. Accurate mapping
and monitoring are therefore essential for their protection. However, distinguishing swamps from upland
forests and shrublands is especially challenging because optical sensors cannot detect water and/or saturated
soil under dense canopies. Synthetic Aperture Radar (SAR) offers distinct advantages in this regard: (1) under
certain conditions, microwaves can penetrate vegetation and provide a strong backscattered signal from double
bounce when surface water or very wet soil are present, and (2) microwaves can penetrate clouds, providing an
opportunity to monitor changes in moisture or the extent of flooding through time. In spite of these advantages,
users may still find it difficult to know which wavelengths, incidence angles, polarization states, and times of
year can be used to detect swamps because of the complexity of choices, and some confusing and conflicting
results presented in the literature. The goal of this research was therefore to better elucidate the impacts of
sensor and environmental characteristics on the seasonal backscattering behaviour observed in and separability
between swamps and dry, upland forests and shrublands, as well as determine the need for additional ancillary
data like digital elevation models and derivatives to improve mapping accuracy. Using SAR data from three
sensors with two different wavelengths, various polarization states, and a range of incidence angles we: (1)
investigate the drivers of variations in seasonal trends and the frequency and timing of changes among different
SAR time series, and assess their impact on separability, (2) quantify the importance of acquisition timing,
type, number of derivatives on the accuracy of Random Forest models. Our results show that a common
pre-conception that longer wavelengths are preferred for distinguishing flooded versus upland forests and
shrublands has proven overly general, that data acquired before leaf flush in the spring provides superior
results, and that DEM data only provides an advantage when using sub-optimal SAR data.
1. Introduction

Today it is widely recognized that the level of protection afforded
wetlands should better reflect their value to society and the natural
environment (Zedler and Kercher, 2005; Mitsch and Gosselink, 2015;
Millennium Ecosystem Assessment, 2005; Dugan and Dungan, 1990).
However, oftentimes the level of protection permitted is limited by
available knowledge on their location, extent, and/or condition. This is
especially true of those wetlands densely vegetated by trees (e.g., >6 m
in height) and/or shrubs (e.g., 1–6 m in height) (Ministry of Natural
Resources and Forestry, 2014), herein referred to as swamps (Riley,
1994; National Wetlands Working Group et al., 1998; Ministry of
Natural Resources and Forestry, 2014; Davidson et al., 2022). This
is because dense canopies obscure surface saturation and/or flooding
from remote detection via aerial photography (Golet and Larson, 1974;
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Ministry of Natural Resources and Forestry, 2014), and satellite im-
agery (Amani et al., 2017; Banks et al., 2019; Pouliot et al., 2019),
often resulting in confusion with dry upland forests and shrublands
(referred to herein collectively as dry, wooded uplands) that contain
the same or similar species and/or densities. Swamps are also difficult
to identify because they can occur ephemerally, often drying by late
summer, and frequently mark the transition zone between wetlands and
uplands (Ministry of Natural Resources and Forestry, 2014).

This presents a significant challenge to establishing unbiased and
accurate wetland inventories and monitoring programs since swamps
are known to be widely distributed throughout the globe. This includes
North America (Davidson et al., 2022) where they are the most com-
mon and spatially extensive type of wetland in the conterminous United
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States (∼49% of wetland area (Hall et al., 1994)), Alaska (∼76% of the
wetland area (Hall et al., 1994)), and parts of Canada (e.g., ∼40%–
0% of the peatland area in Northern Ontario (Riley, 1994); ∼86% of
he wetland area in southern Ontario (Byun et al., 2018)) (Tiner et al.,
994; Mitsch and Gosselink, 2015)). Given of the range of ecological
ettings within which they are found, swamps are also among the most
iologically diverse of all wetland types, and are known to provide crit-
cal habitat to many regionally rare and at-risk species (Welsch, 1995;
ntario Ministry of Natural Resources and Forestry, 2018). Compared

o other treed wetlands (e.g., fens), swamps have higher rates of net
rimary productivity, below and aboveground biomass, increasing litter
nput and accumulation of soil organic matter. As a result, they play
n important, yet often underappreciated role in the terrestrial carbon
ycle (Bona et al., 2018; Stoler and Relyea, 2020; Davidson et al.,
022).

Given the challenge associated with identifying swamps, as well
s regional differences in how they are defined, categorized, and
apped (Ministry of Natural Resources and Forestry, 2014; Amani

t al., 2017; Banks et al., 2019; Pouliot et al., 2019), their spatial
xtent and distribution remains highly variable among existing data
ources. There are also no established methods or products available
or monitoring changes in their hydrology (Davidson et al., 2022). This
akes it a challenge to track changes in their health since among all

he abiotic factors affecting the function and formation of wetlands,
ncluding driving ecosystem processes, hydropattern (characterizing
he frequency and duration of water level perturbations) is the single
ost important. It is therefore not only critical for determining the
resence and extent of swamps, but also their capacity to perform
mportant functions (Lang et al., 2008b; Mitsch and Gosselink, 2015).
iven current knowledge gaps, in many models and data sets, including
reenhouse gas inventories, swamps are either grouped together with
ogs and fens (Kuhn et al., 2021; Olefeldt et al., 2021), or excluded
ltogether because of a lack of reliable and consistent data (Webster
t al., 2018; Bona et al., 2020).

Remote sensors, particularly synthetic aperture radars (SARs), have
he potential to improve swamp mapping and monitoring given the
apacity of microwaves to penetrate vegetation under certain con-
itions (Henderson and Lewis, 2008; Bourgeau-Chavez et al., 2009;
orcoran et al., 2013; Amani et al., 2017; Dabboor et al., 2019; Banks
t al., 2019), and their sensitivity to the presence of surface water
nd/or soil moisture (Imhoff et al., 1986; Lang et al., 2008a; Townsend,
002b; Banks et al., 2019). By comparison, shorter wavelength optical
ensors are ideal for detecting energy reflected/emitted from the tops
f the canopies, especially following leaf-out and/or in the absence of
arge canopy gaps (Hess et al., 1990; Bourgeau-Chavez et al., 2004;
renier et al., 2007; Lang et al., 2008a; Bourgeau-Chavez et al., 2009,
016). With optical sensors, the temporal window within which suit-
ble imagery can be acquired is also restricted to when the atmosphere
s free of clouds and/or haze, making it more challenging to acquire
mages coincident with seasonal flooding and/or soil saturation.

At the same time, defining the conditions that permit canopy pen-
tration and produce detectable differences in SAR backscatter and/or
hase remains a challenge (Magagi et al., 2002). This is because these
onditions vary based the complex interaction among several variables,
ncluding: (1) sensor characteristics (e.g., polarization, frequency, reso-
ution, noise floor, incidence angle), and (2) environmental conditions
e.g., moisture content, size, shape, number, and/orientation of gaps
n the canopy, trunks, stems and leaves, and tree height, extent of
looding, surface roughness of the ground/water, dielectric properties
f the soil, understory vegetation). It is unsurprising then that varying
evels of success have been reported on the use of SAR for identifying
nd monitoring changes in swamps (Townsend, 2001, 2002b; Lang
t al., 2008a; Henderson and Lewis, 2008; Amani et al., 2017; Dabboor
t al., 2019; Banks et al., 2019).

This raises questions regarding the cause and degree to which accu-

acies can vary for classification and change detection products based

2 
solely on differences in the SAR data being acquired, and whether en-
vironmental conditions vary through space and time. Left unexplained,
the value of such products is diminished as this can lead to reporting
errors and confusion among end users. There is therefore a need to not
only improve image interpretation, but also quantify potential biases,
especially since: (1) SAR data are becoming more widely available,
free, and open, (2) SAR data vary in terms of their quality, and
information content with respect to a given application, (3) the number
and diversity of SAR sensors and data types continues to increase, and
(4) there is increasing demand for and capacity to generate global
products that are challenging to calibrate to or validated for all possible
data types and environmental conditions. Given the widespread use
of Digital Elevation Models and their derivatives to improve wetland
mapping accuracy (Millard and Richardson, 2013; Mahdavi et al., 2018;
Banks et al., 2019; White et al., 2017; Pontone et al., 2024), there is also
a need to determine the relative importance of these data given they
represent nearly time-invariant information. When ultimately driving
a model’s predictive performance then, they are not well-suited for
assessing changes through time (e.g., in wetland extent) (Banks et al.,
2019).

2. Objectives

The goal of this research was therefore to better elucidate the
impact of sensor and environmental characteristics on the intraannual
backscattering behaviour observed in and the separability between,
swamps and dry, wooded uplands, as well as determine the need
for additional ancillary data, like DEMs and derivatives, to improve
mapping accuracy. To this end, multiple SAR time series were acquired
over the same study area to: (1) investigate the drivers of variations
in seasonal trends and the frequency and timing of changes among
different SAR time series, and assess their impact on separability, and
(2) quantify the importance of acquisition timing, type, number of SAR
derivatives, and the availability of DEM information, on the accuracy
of Random Forest models.

The rest of the manuscript is organized as follows. Section 3 de-
scribes the theory of microwave interactions in swamps and dry,
wooded uplands, and provides a summary of the various sensor and
environmental characteristics the affect both the transmissivity of
the canopy and backscatter from the ground and/or water surface.
Section 4 describes the methods, and the results and discussion are
in Sections 5 and 6. Limitations are reported in Section 6, and the
conclusions are provided in Section 7.

3. Background

3.1. Theoretical model of SAR backscatter from swamps and dry, wooded
uplands

From wooded areas (wet or dry), SAR backscatter is the coherent
sum of electromagnetic waves from multiple scattering interactions,
including: (1) single scattering events, producing returns directly from
the trunk layer, ground/water, and/or canopy, and (2) scattering at-
tributable to multiple interactions between the ground/water surface,
trunk layer, and/or canopy (e.g., trunk to ground/water surface and
vice versa) (Ormsby et al., 1985; Imhoff et al., 1986; Richards et al.,
1987; Dobson et al., 1995; Wang et al., 1995; Townsend, 2002b;
Kasischke and Bourgeau-Chavez, 1997; Ahern et al., 2018). Relative
differences in returns from all sources vary widely, even for SAR data
acquired with the same sensor characteristics, because of differences in
environmental conditions.

Among these differences, it is the presence and/or absence of sur-
face water that has a significant affect on backscattering behaviour and
therefore the separability between swamps and dry, wooded uplands.
When incident upon the ground/water surface, some fraction of the

transmitted microwave signal is transmitted to lower layers and usually
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absorbed and/or converted to heat energy, while the remainder is re-
flected. When incident upon a smooth surface (measured relative to the
wavelength of incident microwaves) all incoming radiation is scattered
forward at an angle equal to the incidence angle and measured from
normal on the intercepting surface to parallel with the radar line of
sight. As surface roughness increases scattering becomes more diffuse as
the beamwidth of the scattered radiation spreads but remains centered
in the same, specular direction (Ahern et al., 2018).

When a swamp is completely flooded then its ground/water surface
is smooth so much of the incident signal is preserved and directed
away from the radar antenna. A large proportion of this can then be
redirected back toward the sensor from other forward scattering events:
(1) double bounce, where the incident signal interacts with two surfaces
oriented at some angle to another (i.e., the trunk and ground/water sur-
face), and (2) multi-path, where multiple scattering interactions occur
(i.e., between the ground/water surface, trunk and/or canopy) (Imhoff
et al., 1986; Wang et al., 1995; Kasischke and Bourgeau-Chavez, 1997).
As a result, returns are often higher from swamps than dry, wooded
areas for which a greater proportion of the transmitted microwave
signal is transmitted and absorbed by lower layers of the soil and/or
diffused by rough features (e.g., hummocks, live and/or senescent
vegetation) (Engheta and Elachi, 1982; Imhoff et al., 1986; Townsend
and Walsh, 2001; Townsend, 2002b; Brisco et al., 2013; White et al.,
2015; Dabboor et al., 2019).

Polarimetric radars can also measure the co-pol phase difference
representing the inter-channel phase between HH and VV (electric field
vector oscillates perpendicularly (H) or parallel (V) to the direction
of travel for both incident (first letter) and received (second letter)
polarizations). This information can then be used to identify different
scattering mechanisms. This includes double bounce as there is usually
a change in the orientation (direction of oscillation from down to up or
vice versa) of the vertically, but not the horizontally polarized wave,
resulting in a phase shift of up to 180◦ following two scattering events.

owever, research has demonstrated that it can be less reliable when
cquired at steep incidence angles and/or under dry conditions (Brisco
t al., 2015, 2017; Ahern et al., 2018; Atwood et al., 2020; Ahern et al.,
022). In such cases, other indicators of double bounce, especially high
eturns in the HH polarization, or a high HH to VV ratio are preferred.

.2. Sensor and environmental characteristics affecting the effective trans-
issivity of the canopy and returns from the water/ground surface and
runks

Given this model of the backscattering behaviour observed within
wamps and dry, wooded uplands, there is need to understand the
ensor characteristics and environmental conditions affecting differ-
nces in contributions from single or multiple scattering events. More
pecifically, it stands to reason that the capacity to differentiate swamps
rom dry, wooded uplands with SAR is predicated on the fact that
ncident microwaves are capable of penetrating the intervening canopy
nd trunk layers (Wang et al., 1995; Townsend, 2001; Lang et al.,
008a,b; Bourgeau-Chavez et al., 2016; Banks et al., 2019). This is
ecause when incident microwaves predominately interact with the
ops of canopies, their backscatter and phase can be indistinguishable
etween wet or saturated and dry areas, especially when vegetation
ypes and/or densities are similar (Townsend, 2002b; Amani et al.,
017). Moreover, in the absence of standing water at the surface,
he extent to which incident microwaves are preserved and redirected
lso depends on the moisture content of the soil, while the density
f vegetation within the understory also affects the degree of signal
ttenuation.

The following therefore aims to provide a summary of both the
ensor and environmental characteristics known to affect the effective
ransmissivity of the canopy (measured relative to the characteristics of
he microwaves transmitted by the sensor, as well as the environmental
onditions of the wetland being imaged) and scattering at the water

nd/or ground surface in both swamps and dry, wooded uplands.

3 
3.2.1. Wavelength
As wavelength decreases (frequency increases) relative to the av-

erage diameter of structural elements within the canopy, generally, so
too does the attenuation depth and penetration capacity of the radar
signal (Woodhouse, 2017). As a result, the branches and/or leaves of
shrubs and trees can be effectively transparent to longer wavelength
(e.g., P- (30–100 cm) and L-(23 cm) band) microwaves, while penetra-
tion of shorter (e.g., C-(5.7 cm) and X-(3.5 cm) band) wavelength mi-
crowaves can be greatly reduced, especially in densely vegetated areas.
Because of this, results from studies that have used longer wavelength
(e.g., L-band data) SARs for inundation mapping in wooded areas have
been more consistently positive (Ormsby et al., 1985; Place, 1985;
Krohn et al., 1983; Gesch, 1990; Hess and Melack, 1994; Townsend
and Walsh, 1998; Costa et al., 1998; Townsend and Walsh, 1998)
compared to shorter wavelength (e.g., C-band) SARs (Hess et al., 1995;
Wang et al., 1995; Moreau et al., 1998; Townsend and Walsh, 1998;
Milne et al., 2000; Henderson and Lewis, 2008; Amani et al., 2017).
Though there are some exceptions (Banks et al., 2019), this has led
to a prevailing notion that longer wavelengths are required to detect
flooding and/or soil saturation in forests and shrublands.

3.2.2. Incidence angle
The angle of incidence at which a radar image is acquired can also

impact the effective transmissivity of the canopy and relative roughness
of the ground surface. Generally, as incidence angle increases, so too
can attenuation within the canopy as this increases the path length
between the sensor and surface, increasing the number of features
with which the signal interacts (Richards et al., 1987; Ford and Casey,
1988; Hess et al., 1990; Kandus et al., 2001; Magagi et al., 2002).
This can effectively limit returns originating from the ground and/or
water surface, so it is similarly well-established that steeper angles
(i.e., 20–30◦ Hess et al., 1990; Sokol et al., 2004; Lang et al., 2008b)
are generally preferred for detecting surface saturation and/or flooding
in wooded areas, especially when there is a range of different cover
types (Richards et al., 1987; Hess et al., 1990; Wang et al., 1995;
Wang and Imhoff, 1993; Bourgeau-Chavez et al., 2001). However, some
authors have also reported that results were not affected by incidence
angle (e.g., Ormsby et al. (1985) and Imhoff et al. (1986) with SIR-B
L-band data, and Townsend and Foster (2002) with Radarsat-1 C-HH
data acquired between 10 to 46◦).

3.2.3. Polarization and polarimetric diversity
The polarization of the transmitted signal also affects the detectabil-

ity of surface saturation and/or flooding in the presence of woody
vegetation. HH, especially if acquired at long wavelengths (e.g., L-
band) (Hess et al., 1995; Hess and Melack, 2003), is generally con-
sidered the best single polarization for penetrating vegetation (Wang
et al., 1993; Bourgeau-Chavez et al., 2001; Townsend, 2002a). By
comparison, greater signal attenuation and increased scattering of ver-
tically polarized microwaves occurs before incident signals can reach
the ground and/or water surface due to the presence of vertically
oriented trunks and other vegetation (Hess et al., 1995; Wang et al.,
1995). This is especially true with shorter wavelength C-band data, for
which it has been demonstrated that VV can be much less effective for
identifying flooding in wooded areas (Wang et al., 1995; Townsend,
2002b). At longer wavelengths, the impact of polarization can be less
significant, as both L-band cross (HV/VH) and VV polarized data have
been useful for identifying swamps, though are generally not as good as
HH (Schmullius and Evans, 1997). Many authors have also found that
use of multiple polarizations can improve separability between flooded
and non-flooded forests (Henry et al., 2006; Horritt et al., 2003; Banks
et al., 2019), and can be more sensitive to wetland plant phenology and

changes in hydrology (Dabboor et al., 2019).
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3.2.4. Vegetation structure and phenology
The physical structure of the vegetation (e.g., number, size and

configuration of branches and leaves) and its condition (e.g., moisture
content), can also affect the attenuation depth and penetration capacity
of incident microwaves (Richards et al., 1987). Generally, the more
open the canopy (Lang et al., 2008b), and when the wavelength is much
greater than leaf size (Pope et al., 1994; Wang et al., 1995), there is
greater potential to detect surface saturation and/or flooding, even with
C-band (Townsend and Walsh, 1998; Rao et al., 1999; Townsend, 2001,
2002a; Costa, 2004; Lang et al., 2008b) VV data (Townsend and Walsh,
1998). In many cases, the transmissivity of the crown also changes
throughout the growing season and is greatest prior to the leaf-out. At
this time a range of wavelengths, incidence angles, and polarizations
have been used to detect surface water and/or saturated soils in wooded
areas (Townsend, 2002b; Lang et al., 2008a; Amani et al., 2017; Banks
et al., 2019), even with X-band data (Voormansik et al., 2013).

Once transmitted through the canopy, the ground and/or water sur-
face and vegetation in the understory can also impact the detectability
and capacity to monitor changes in surface water and/or soil moisture
in wooded areas. This includes the transmissivity of the trunk layer,
surface roughness, and the number and diameter of trunks (Lang et al.,
2008a). In cases where vegetated hummocks cover a significant por-
tion of the ground surface, for example, it is expected that incident
microwaves are more diffused, possibly to an extent which renders
observed backscatter indiscriminate from dry, wooded uplands. The
size and number of trunks also determines the strength of the returned
signal. With too few trunks, or trunks that are much smaller in size than
the wavelength of incident microwaves, returns may be low despite
the presence of saturated soil and/or flooding. In such cases, shorter
wavelengths may be preferred (Townsend, 2002b).

3.3. Noise and sensitivity

Even in cases where incident microwaves can effectively penetrate
the canopy, a sensor’s radiometric sensitivity or resolution ultimately
dictates its capacity to distinguish between targets, especially if similar
in value and low in intensity (Woodhouse, 2017; Dabboor et al., 2019;
Banks et al., 2019). With SARs, contributions from noise are typically
quantified in terms of a Noise Equivalent Sigma Zero (NESZ) value,
representing the equivalent radar cross section required to produce a
signal-to-noise ratio of 1 (i.e., an equal proportion of noise and received
signal) (Woodhouse, 2017). A higher (worse) noise floor therefore
yields a lower signal to noise ratio, increasing the range of values
observed for a given target and diminishing a sensor’s capacity to
distinguish between targets with similar returns. Though the effects of
noise are reduced when returns are higher, they can still impact the
separability of classes like swamps and dry, wooded uplands (Banks
et al., 2019).

3.4. Summary and impetus for this work

In addition to some of the conflicting results noted above, it is
notable that users do not always have the flexibility to select among
different wavelengths, incidence angles, polarizations, and/or noise
floors. Depending on their access, or extent of their area of interest,
many can only use what is free and open given the high cost and limited
spatial and/or temporal coverage of some sensors. As a result, it is
often necessary to sacrifice data quality and/or information content
for coverage and/or availability. This is another reason why further
study is needed on the extent to which sensor parameters and/or
environmental conditions may bias results, and whether such biases can

be reduced with additional ancillary data.

4 
4. Methods

4.1. Study area

The study area is located in Prince Edward County, an island
roughly 60 km wide, along the northern shore of Lake Ontario, Canada
(approx. 44◦1′20.39′′N, 77◦14′50.27′′W). Found within the
Manitoulin-Lake Simcoe ecoregion, the site is characterized by mild
winters and warm summers, with a mean annual temperature of
approximately 6 ◦C (mean winter temperature is −4.5 ◦C and mean
summer temperature is 16.5 ◦C). Here, precipitation levels remain con-
stant throughout the year, totalling between 750–1000 mm annually.
Agricultural land is the dominant cover type, though mixedwood forest
makes up a high proportion of the landscape. Topographic variations
are relatively subtle, and there are many wetlands, though swamp is the
most common and spatially extensive (Banks et al., 2019). Here, and
throughout all of southern Ontario, swamps contain mostly deciduous
species (Bunting et al., 1998) and can vary widely in terms of the range
of species within a given stands, the density of trees and/or shrubs, the
moisture content of the soil, and extent of flooding and/or exposure of
soil and/or hummocks (Table 1).

4.2. Water level measurements

To assess the rate and magnitude of seasonal changes in water
level in swamps, measurements were taken at two sites using two
Solinst Levelogger Edge (model 3001) sensors encased in stilling wells
(Fig. 1). Each instrument recorded the hydraulic head at 15-minute
intervals. Values were then corrected by compensating for the effects
of atmospheric pressure using one of two barometers installed at the
northern and southern parts of the study area (i.e., using the barometer
in closest proximity). As shown in Fig. 1, although rain was recorded
throughout the growing season, water levels recorded within swamps
decreased throughout the growing season. Drying trends were also
observed throughout the study area during multiple site visits (Banks
et al., 2019).

4.3. SAR imagery and processing details

Four SAR time series were acquired over the study area (Ta-
ble 2), including multi-angle, quad-pol Radarsat-2, and coherent dual-
pol Sentinel-1 and Alos-2. Compared to Sentinel-1, the availability of
both Radarsat-2 and Alos-2 data was more limited as both satellites
require tasking, neither were free and open at the time they were
acquired, and because of the longer time interval (repeat pass) when
images can be acquired with the exact same geometry (incidence and
look angle): 24 days for Radarsat-2 and 14 days for Alos-2, versus
12 days for Sentinel-1. Each SAR image was processed using the
same method, as follows. First, images were stored in the scattering
matrix format, expressed in sigma nought (linear power) (Cloude and
Pottier, 1996). Each image was then boxcar filtered (using a 5 × 5
pixel window) to reduce the effects of speckle, then converted to the
3 × 3 coherency (C3) and covariance (T3) matrices (Radarsat-2 data
only) or 2 × 2 covariance (C2) matrix (Sentinel-1 and Alos-2) (Cloude
and Pottier, 1996). While represented in slant range geometry, the
Freeman–Durden decomposition (Freeman and Durden, 1998) and
phase difference between HH and VV was calculated for the Radarsat-2
images (Banks et al., 2019; White et al., 2015, 2017). Note that because
of the Brewster Angle effects, power contributions attributed to double
bounce were expected to be underestimated for the Radarsat-2 FQ5 W
image, though were still considered potentially suitable for detecting
relative differences between swamps and dry, wooded uplands (Ahern
et al., 2018). Each multi-band raster was then orthorectified using
the Rational Functions model based on definitive orbit information
and a high resolution Digital Elevation Model (final pixel spacing and
estimated equivalent number of looks (ENL) (Anfinsen et al., 2009),

provided in Table 2) (Banks et al., 2019).
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Fig. 1. Seasonal changes in water level for two swamps with the initial water elevation measured at each site on the first day removed from all subsequent dates for display
purposes (top), daily rainfall (middle), and the timing of each acquisition (bottom).
4.4. Analysis

Classification results from a previous study were used to mask
other land cover types in the area, including agricultural fields, water,
marshes, and shallow water wetlands and other land covers from
further analysis (Banks et al., 2019). 400 point samples were then
generated for both swamps and dry, wooded uplands (800 total) by: (1)
randomly distributing point vectors throughout the entire study area,
all of which were field-verified, and (2) by randomly distributing point
vectors within manually digitized polygons (Banks et al., 2019). All
points were spaced at least 50 m apart in an attempt to account for
the effects of spatial autocorrelation (Millard and Richardson, 2015),
and for each point, raster values of all images and bands, for each time
series, were extracted and used to address the objectives as follows.

4.4.1. Variations in seasonal trends, frequency and timing of change
Box and whisker plots were used to display the range of values

of SAR derivatives for each class and used in combination with the
omnibus test statistic and its factorization (Conradsen et al., 2003,
2016) to analyse variations in (1) seasonal trends, and (2) the frequency
and timing of changes between SAR time series. Data collected in
the field (Banks et al., 2019) was then used to identify the factors
influencing these variations, and assesses their impact on separability
to address the first objective.

Change was evaluating using the omnibus test statistic since it has
already been used to quantify the impact of various SAR sensor char-
acteristics on the number and timing of statistically significant changes
5 
between SAR time series (Dabboor et al., 2019), and has proven ef-
fective for detecting short-term, seasonal changes in swamps (Dabboor
et al., 2019) and other wetland types (Muro et al., 2019, 2016).

The omnibus test detects pixel-wise changes within a stack of 𝑘 un-
correlated and multi-looked coherency or covariance matrices (i.e., all
images in each of the four SAR time series). Compared to pairwise
methods that can be less sensitive to gradual change, the omnibus
approach evaluates change across all possible combinations of pairs.
It also takes into consideration that values for both C and 𝑇 are
known to follow a complex Wishart distribution, providing a basis for
which change can be assessed and evaluated on the basis of statistical
significance (Conradsen et al., 2003). Against all alternative hypotheses
(change) then, the null hypothesis (no change) is tested using the
parameters that characterize each distribution and using the omnibus
statistic (i.e., 𝐻0 ∶ 𝛴1 = 𝛴2 = ⋯𝛴𝑘) as follows:

𝑄 =

[

𝑘2𝑘
𝛱𝑘

𝑖 = 1|𝑐2𝑖|

|𝐶2|𝑘

]𝑛

(1)

where 𝐶2 = 𝛴𝑘
𝑖 = 1𝑐2𝑖 and 𝑛 is the number of looks. Values of the

latter reflect the accuracy with which the distribution 𝑄 is estimated at
each pixel. Approximate values for 𝑄 are provided in Conradsen et al.
(2016) and 𝑄 test statistic can also be factorized following (Conradsen
et al., 2016) to determine the time interval in which change occurs.

Following preparation of T3 (Radarsat-2 time series) and C2
(Sentinel-1 and Alos-2 time series) matrices the Docker image
mort/sardocker was used to: (1) estimate the ENL of each SAR dataset
(samples focused on dry, wooded uplands at the peak of the growing
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Fig. 2. Seasonal trends of select SAR derivatives for each Radarsat-2 time series.
season, for which speckle statistics were expected to be fully devel-
oped), (2) co-register images to a reference (i.e., the first image in each
time series), and (3) apply multi-temporal change detection to identify
the timing of the first, and number of changes (significance level set to
95%). Note that the use of statistical significance is essential to separate
differences in backscatter attributable to real change versus differences
that are attributable to speckle and noise (Canty, 2024).

4.4.2. Image classification
To address the second objective, multiple classification scenarios

were tested using Random Forest in R (Breiman, 2001; Liaw et al.,
2002). Random Forest was used given its ubiquity within remote
sensing (Belgiu and Drăguţ, 2016) and other fields, as well as its ease of
implementation and interpretation. To compare models, independent
accuracy assessments were performed, and variable importance was
calculated based on the Shapley value (Shapley, 1997; Nandlall and
Millard, 2019). Random Forest’s own internal measures of importance
were not used as they are known to be biased in the presence of
correlated variables (Genuer et al., 2010), and variables that differ in
scale (Strobl et al., 2007).

For all scenarios (Table 3 and described subsequently) the same
classifier settings were used (1000 trees; the default value of mtry -
the number of variables randomly selected to determine the optimal
split at each node Millard and Richardson, 2015; White et al., 2017;
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Banks et al., 2019; Millard et al., 2020). To account for variations
between model runs attributable to the subset of training/validation
used in constructing models, accuracies were averaged across 100
bootstrapped iterations of each scenario (i.e., using the same classifier
settings and inputs, but a different random sample for training (70%)
and independent validation (30%)) (see Table 3).

First, intensity values from single images (one date) were classified,
then intensity values from two different dates, for all possible two-date
combinations, were classified (Table 3) as previous studies have shown
that multi-temporal data can improve classification accuracies (Banks
et al., 2019). With the Radarsat-2 time series, an additional set of
models were run that included phase-based derivatives (Table 3, col-
umn 2). A DEM and two derivatives (Topographic Wetness Index and
slope Banks et al., 2019) were then added to each single and two-date
models (Table 3).

For each modelling scenario Shapley values were calculated to
quantify the relative importance or contribution of individual and/or
grouped variables (players) to the accuracy of each modelling scenario
(cooperative game where the goal is to maximize accuracy) (Nandlall
and Millard, 2019). For each player, a higher Shapley value indi-
cates a greater contribution to overall accuracy, and the sum of each
player’s Shapley values (for a specific game) is equal to the overall
accuracy (Nandlall and Millard, 2019).
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Fig. 3. Seasonal trends of Sentinel-1 VV and VH intensity values for each time series.
5. Results

5.1. Variations in seasonal trends, frequency and timing of change

Early in the growing season. preceding both the leaf out of the
canopy and a decrease in water levels (after mid-May), backscattering
returns from swamps exceeded those from dry, wooded uplands in all
SAR time series (Fig. 2). This is due to the high transmissivity of the
canopy at that time (i.e., leaf off) and higher double bounce scattering.
Evidence of this includes high returns attributable to double bounce
from the Freeman–Durden decomposition (Radarsat-2 time series), high
HH returns (Radarsat-2 and Alos-2 time series), a high HH to VV ratio
(Radarsat-2 time series), and the difference in relative phase between
HH and VV (Radarsat-2 time series). Cross-pol (HV or VH) returns at
C-band (Radarsat-2 and Sentinel-1 time series) were also higher for
swamps early in the growing season, while at L-band, HV returns were
similar for both classes. This differences reflects the lower sensitivity of
longer wavelength microwaves to fine-scale features (e.g., branches of
trees or shrubs), that typically yield high cross-pol returns at C-band,
especially in the presence of surface water (Ullmann et al., 2016, 2017;
Banks et al., 2019).

Given differences in scattering behaviour, separability between
swamps and dry, wooded uplands was also high early in the growing
season, though decreased significantly through time and varied widely
7 
among both SAR sensors and derivatives (Figs. 2, 3 and 4). Surprisingly,
the R2 FQ5 W 24–26 HH intensity image acquired on April 21st offered
the best separability among all SAR derivatives even compared to the
Alos-2 41–43 HH intensity image acquired on May 20th (7 versus 70%
of the 800 samples (400 per class) occupied a common range (Figs. 2
and 4)). This is a result of the combined effects of the lower NESZ
value of the R2 FQ5 W 24–26 image, as well as its acquisition at a
steep angle which reduced canopy attenuation and resulted in higher
returns. These yielded a higher signal to noise ratio, reducing the range
of values for swamp compared to Alos-2 (i.e., minimum and maximum
HH intensities spanned 9 dB versus 14 dB with the Alos-2 41–43 HH
image acquired on May 20th). Even when compared the R2 FQ5 W
24–26 HH intensity image acquired on April 15th, just five days before
the earliest Alos-2 image and following canopy leaf out in some areas
(Table 1), fewer samples for swamp and dry, wooded uplands occupied
a common range (58 versus 70%). Separability was also higher between
swamp and dry, wooded uplands with the two earliest FQ17 W HH
intensity images than the earliest Alos-2 image (just 27 and 46% of
class samples occupied a common range), though was not as high as
the earliest R2 FQ5 W 24–26 HH given they were acquired both later in
the growing season (following leaf out in some areas) and at shallower
angles, which resulted in more canopy attenuation. For all Radarsat-
2 HH images acquired between June and September separability was
lower, though similar to the Alos-2 images acquired in August.
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Table 1
Types of swamps found throughout the study area. Photos are of representative samples
taken approximately parallel to the radar line of sight of the Fine Quad-Pol Wide
Radarsat-2 images between May 14–18th, 2018 (Table 2). Flooding conditions were
recorded at the same time, thus reflect conditions in spring.

Type Description Photos

Shrub, Tree mixed
completely flooded
in spring

Mix of tall maple and elm
trees, and a thick
understory of dogwoods,
grasses, and reeds. No
exposed land and/or
hummocks.

Shrub, Tree mixed
intermittent
flooding in spring

Living and dead maple
trees, red osier dogwood,
and green ash. Understory
intermittently flooded,
with dense vines,
hummocks of soil, grasses,
reeds, and moss.

Treed —
Intermittent
flooding in spring

Dense stands of tall trees,
mostly silver maple, and
birch. Open understory
with intermittent flooding
and some areas of exposed
soil and herbaceous plants.

Treed — Completely
flooded in spring

Mostly silver maple, with
an open understory of
mostly water, with few
hummocks of exposed
ground, grasses, and reeds.

Though less separable with the Sentinel-1 time series due to the
availability of sub-optimal polarizations (VV and VH), a higher (worse)
noise floor, and images being acquired at shallower angles than the R2
FQ5 W 24–26 images (Fig. 3), VV returns were still higher on average
in swamps than dry, wooded uplands early in the growing season. This
difference suggests dissimilarities in scattering at the ground/water
surface. As noted previously, in the presence of flooding incident
microwaves are mostly redirected from the smooth water surface to
vertically oriented trunks, which can then be returned back in the
8 
Table 2
SAR time series (DD-MM-YYYY) and final, processed image specifications (in the table
R2 = Radarsat-2, S1 = Sentinel 1, A2 = Alos-2). Listed below the table for each
time series is the final pixel spacing, incidence angle, polarization, look direction, and
estimated ENL. Note that Radarsat-2 FQ numbers (5 and 17) and Sentinel-1 relative
orbit numbers (4 and 108), denote images acquired with different incidence angles and
resolutions based on the side looking geometry of the sensor.

R2 FQ5 W 24–26a R2 FQ17 W 37–38b

Radarsat-2

21-04-2018 17-04-2018
15-05-2018 11-05-2018
08-06-2018 04-06-2018
02-07-2018 28-06-2018
19-08-2018 15-08-2018
12-09-2018 08-09-2018

S1 108 35–37c S1 4 45–47d

Sentinel-1

06-04-2018 11-04-2018
18-04-2018 23-04-2018
30-04-2018 05-05-2018
12-05-2018 17-05-2018
24-05-2018 29-05-2018
05-06-2018 10-06-2018
17-06-2018 22-06-2018
29-06-2018 04-07-2018
11-07-2018 16-07-2018
23-07-2018 28-07-2018
04-08-2018 09-08-2018
16-08-2018 21-08-2018
09-09-2018 02-09-2018
21-09-2018 26-09-2018

A2 41–43e
20-05-2018
03-08-2018
26-08-2018

a 8 m, 24–26◦, quad-pol, ascending, 17.
b 8 m, 37–38◦, quad-pol, descending, 17.
c 10 m, 35–37◦, VV+VH, ascending, 15.
d 10 m, 45–46◦, VV+VH, ascending, 15.
e 10 m, 41–43◦, HH+HV, ascending, 15.

Fig. 4. Seasonal trends of Alos-2 HH and HV intensity values.

direction of the sensor. In dry uplands however, a larger proportion of
the signal can be diffused when incident upon rough features at the
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Fig. 5. Change detection results (as a percentage of the 400 samples for each class) for the Radarsat-2 time series indicating the timing of the first and total number (freq.) of
statistically significant changes (rounded to the nearest integer). 𝑋-axis labels indicate the timing (acquisition date) or number of changes (or ‘‘no change’’, if applicable).
Table 3
Classification scenarios tested for each SAR time series (Table 1), and based on
backscatter intensity alone (I), backscatter intensity and phase information (P), and
I and/or P combined with a DEM (DEM). This series of tests was completed for both
all single dates and all possible two-date combinations. Numbers indicate the number
of models run for each time series, which varied depending on the number of images
available.

I I+P

Single dates

R2 FQ5 W 24–26 (6) R2 FQ5 W 24–26 (6)
R2 FQ17 W 37–38 (6) R2 FQ17 W 37–38 (6)
S1 108 35–37 (14)
S1 4 45–47 (14)
A2 41–43 (3)

Two dates

R2 FQ5 W 24–26 (15) R2 FQ5 W 24–26 (15)
R2 FQ17 W 37–38 (15) R2 FQ17 W 37–38 (15)
S1 108 35–37 (91)
S1 4 45–47 (91)
A2 41–43 (3)

I+DEM I+P+DEM

Single dates

R2 FQ5 W 24–26 (6)
R2 FQ17 W 37–38 (6)

S1 108 35–37 (14)
S1 4 45–47 (14)
A2 41–43(3)

Two dates

R2 FQ5 W 24–26 (15)
R2 FQ17 W 37–38 (15)

S1 108 35–37 (91)
S1 4 45–47 (91)
A2 41–43 (3)

surface, explaining why returns were lower in dry, wooded uplands
than in swamps, and thus why VV offered some separability between
classes.

As the growing season progressed, separability decreased for all SAR
time series, though change detection results showed that this was a
result of different environmental factors (Figs. 5, 6 and 7). With the
9 
Alos-2 time series, change was not detected in a majority of the samples
for dry, wooded uplands (93%) despite both the both the leaf out of the
canopy (Fig. 1) and growth of vegetation in the understory (identified
during field visits). Again, this is a reflection of the decreased sensitivity
of L-band microwaves to fine scale changes in the vegetation that are
known to affect scattering behaviour at C-band (Figs. 5 and 6) (Dabboor
et al., 2019). In swamps though, change was detect in 67% of samples,
most of which occurred between the first (May 20th) and second
(August, 3rd), acquisition, were a result of a decrease in HH returns,
and led to a majority of class samples occupying a common range
(i.e., 98%; Fig. 4). Given water levels decreased during this time (Fig. 1)
this underscores the critical role of the presence and/or absence of
surface water in the separability between swamps and dry, wooded
uplands at L-band. More specifically, while canopy leaf out may not
have affected backscattering behaviour, an absence of surface water in
swamps resulted in backscattering returns that were indistinguishable
from dry, wooded uplands.

With both the Radarsat-2 and Sentinel-1 time series change was
detected in more samples for dry, wooded uplands (53%–78% versus
7% with Alos-2) and in many cases coincided with the timing of the leaf
out of the canopy around mid-May (Figs. 1, 5 and 6). This is a result
of the increased sensitivity of shorter wavelength, C-band microwaves
to fine scale changes in plant growth and phenology. However, it
is notable that with the R2 FQ5 W 24–26 time series, dry, wooded
uplands and swamps still remained separable with data collected on
May 15th despite the leaf out of the canopy in some areas yielding a
statistically significant change in 23 and 38% of samples for each class
between April 21st and May 15th (Fig. 5). Compared to the Radarsat-2
time series, it is notable that Sentinel-1 change detection results were
more challenging to interpret since, more acquisitions were available,
increasing the likelihood of images being collected under a wider range
of environmental conditions (e.g., during or immediately preceding
rainfall; Fig. 1).



S. Banks et al. Remote Sensing of Environment 314 (2024) 114377 
Fig. 6. Change detection results (as a percent of the 400 samples for each class) for the Sentinel-1 time series indicating the timing of the first and total number (freq.) of
statistically significant changes (rounded to the nearest integer). 𝑋-axis labels indicate the timing (acquisition date) or number of changes (or ‘‘no change’’, if applicable).
5.2. Image classification and variable importance

5.2.1. Single dates
The accuracy of Random Forest models based on derivatives from

single SAR images (dates) varied not just based on sensor characteristics
(e.g., incidence angle, polarization, noise floor, but acquisition timing
(Figs. 8 and 9)). With both Radarsat-2 time series, model accuracy was
higher early in the growing season before leaf-out, then decreased. With
the R2 FQ5 W 24–26 data this decrease was more gradual (96, 87, 78,
73, 66, to 64%), while a more obvious step change was observed with
the R2 FQ17 W 37–38 time series following leaf out (96, 93, 68, 61,
51, 51%). This step change was similarly observed in the trend analysis,
and change detection results and shows that compared to the R2 FQ5 W
24–26, accuracies were more affected by the leaf out of the canopy, and
less by changes in water level.
10 
At similar times in the growing season, the accuracies of models
constructed with the Sentinel-1 and Alos-2 time series were lower than
those based on Radarsat-2 data (Fig. 9). For example, the average
overall accuracy for the R2 FQ5 W 24–26 image acquired on 21-
04-2018 was of 96% compared to just 69% for the S1 108 35–37
image acquired three days earlier on 18-04-2018. In some cases though
differences were relatively minor. For example, the average overall
accuracy for the R2 FQ5 W 24–26 image acquired on 15-05-2018
was just 3% higher than the A2 41–43 image acquired on 20-05-2018
(i.e., 87 vs. 84%).

Considering the best models for each time series though, the highest
accuracy achieved with Radarsat-2 data (96%) was 21 and 12% higher
than the best Sentinel-1 (75%) and Alos-2 (84%) models. To be clear,
this demonstrates that optimally timed acquisitions, even if acquired at
shorter wavelengths, can perform equally as well as long-wavelength



S. Banks et al. Remote Sensing of Environment 314 (2024) 114377 
Fig. 7. Change detection results (as a percentage of the 400 samples for each class)
for the Alos-2 time series indicating the timing of the first and total number (freq.) of
statistically significant changes (rounded to the nearest integer). 𝑋-axis labels indicate
the timing (acquisition date) or number of changes (or ‘‘no change’’, if applicable).

L-band SAR for separating swamps and dry, wooded uplands, though
requires that the data are acquired with a low (better) noise floor and
in the optimal (HH) polarization.

Shapley values confirm the importance of the HH polarization to
overall accuracies, especially early in the growing season for both the
Radarsat-2 and Alos-2 time series (Fig. 8). By comparison, contributions
from HV or VH and VV were lower, and similar through time with the
Radarsat-2 time series, while VV tended to contribute more early in the
growing season with the Sentinel-1 data. Models based on the Radarsat-
2 time series also show that phase information had a minimal impact
on model accuracy, as in most cases differences between models based
on intensity versus intensity and phase did not exceed 3%.

Including the DEM and its derivatives (topographic wetness and
slope) also had a variable impact on the accuracy of Random Forest
models. For example, accuracies remained high and unchanged for
models based on early season data, though increased for models con-
structed with late-season data. The relative importance of the DEM
and its derivatives was also proportionally higher in models based
on SAR images acquired later in the growing season. For example,
values increased from 27 vs. 36% with the earliest and latest R2
FQ5 W 24–26 images (Fig. 8). Nearly all models, regardless of sensor,
acquisition characteristics, or acquisition timing, achieved accuracies
exceeding 75% with the inclusion of the DEM and its derivatives. This
demonstrates the potential for these data to compensate for differences
in accuracies that may arise from varying senor and environmental
characteristics.

5.2.2. Two dates
For Random Forest models constructed with derivatives from two

SAR images (two dates), accuracies similarly varied by sensor charac-
teristics and acquisition timing (Figs. 10 and 11). With both Radarsat-2
time series the average overall accuracy of models ranged from 62%–
97% with those constructed with derivatives from one or more images
acquired early in the growing season achieving the highest accuracies,
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while those constructed with derivatives from images acquired late in
the growing season achieving the lowest accuracies. However, many
models’ accuracies exceeded those achieved for single dates, even if ac-
quired following the leaf out of the canopy. This similarly demonstrates
capacity to compensate for the effect of acquisition timing through
inclusion of multiple acquisition dates, though returns diminished as
images were acquired later into the growing season following leaf out,
and potentially the drying of some swamps.

By comparison, the best Sentinel-1 and Alos-2 models based on
derivatives from two SAR images (dates) were 82 and 89%, 15 and
8% less than the best Radarsat-2 models (97%), and only 5 and 4%
better than the best Sentinel-1 and Alos-2 models based on derivatives
from one SAR image (date). This indicates that, like with the Radarsat-
2 data, multi-temporal Sentinel-1 and Alos-2 data only marginally
improved upon the accuracy of models constructed with derivatives
from single SAR images acquired at the optimal time in the growing
season (i.e., prior to leaf out). At the same time, for the Sentinel-1 time
series, multiple models based on derivatives from two images achieved
accuracies 75%, while the accuracy of all models based on derivatives
from single images where 75% or less.

Shapley values demonstrate the relative importance of images ac-
quired early in the growing season, especially when the second image
was acquired much later (Figs. 10 and 11). For example, with the R2
FQ5 W 24–26 time series, all models constructed with derivatives from
the image acquired on 21-04-2018 equalled 97%, though contributions
from these derivatives increased from 53 to 64% when combined with
derivatives from images acquired on 15-05-2018, 08-06-2018, 02-07-
2018, 19-08-2018, and 12-09-2018, respectively. Shapley values were
also more similar for derivatives from images acquired either before or
after the leaf out of the canopy.

Including the DEM and its derivatives had a similar impact on
Random Forest models constructed with derivatives from two SAR
images. Accuracies remained high for models constructed with early
season data, though increased for images acquired later in the growing
season (i.e., by up to 15, 27, and 17% with the Radarsat-2, Sentinel-
1, and Alos-2 time series). For models constructed with SAR images
acquired later in the growing season, the relative importance of the
DEM and its derivatives was also proportionally higher, increasing from
27–34, 27–39, 32–43, 24–34, and 32%–40% for the best to worse two-
date combinations from the R2 FQ5 W 24–26, R2 FQ17 W 37–38, S1
108 35–37, and S1 4 45–47, and Alos-2 time series, respectively.

6. Discussion

Our findings emphasize the need for a more nuanced understanding
of the impact of both environmental and SAR sensor characteristics
on the capacity to detect flooding and/or soil saturation in wooded
areas. The prevailing consensus that longer wavelengths are better
suited for detecting flooding and/or soil saturation (Richards et al.,
1987; Hess et al., 1995; Wang et al., 1995) has proven overly gen-
eral. Rather, both sensor and environmental characteristics together
determine the extent to which: (1) incident microwaves can penetrate
to the ground/water surface, and (2) whether returns are enhanced
and/or produce detectable differences to which the sensor is sufficiently
sensitive to. Herein, several observations have been made that support
this conclusion, including: (1) the trend analysis showed that among all
SAR derivatives, the C-band R2 FQ5 W 24–26 HH intensity offered the
best separability late into the growing season, and (2) the classification
results demonstrated the importance of acquisition timing, the benefit
of HH polarized data, and of a better noise floor over longer wavelength
L-band Alos-2 data.

The impact of acquisition timing on the accuracy of Random Forest
models in particular, cannot be understated. Interestingly, as long
as the image was acquired early in the growing season accuracies
were relatively high among all SAR sensors, polarizations, and in-
cidence angles, regardless of whether ancillary data like DEMs and
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Fig. 8. Shapley values for single (HH, HV, VH or VV polarization) and grouped sets of variables (by SAR image acquisition date and by DEM, topographic wetness index (TWI)
and slope (SLP) together) to demonstrate their relative importance to the independent overall accuracy (total bar height) of multiple Random Forest models (averaged across 100
runs). Shown above are all models based on single SAR images (dates) classified alone (top row) and with a DEM plus derivatives (bottom row). Shapley values are summed above
each bar to indicate the independent overall accuracy of each model.
their derivatives were included. Other authors have reported similar
findings when attempting to distinguish swamps from dry, wooded
uplands. Townsend (2001), for example, found accuracies decreased
from 98% to 89% when classifying leaf-off and leaf-on C-band Radarsat-
1 imagery. Lang et al. (2008a) saw accuracies fall by 7%–10% when
they classified leaf-on C-band ASAR imagery. Banks et al. (2019) also
found that classification accuracies decreased by 11 to 21% when
classifying leaf off vs. leaf-on C-band Radarsat-2 and simulated C-band
Radarsat Constellation Mission data over the same study site. Notably,
map products based on early season data are expected represent the
maximum extent of swamps which vary dramatically between years.
Long-term monitoring may therefore be required to distinguish sites
that are only flooded because of a single high water event, though do
12 
not meet the definition of a wetland (Ministry of Natural Resources and
Forestry, 2014).

These results also highlight that when captured in a transitional
state, or unknowingly before or after some phenologial and/or hy-
drologic event, significant changes in scattering behaviour can occur.
As a result, classifiers may perform unpredictably in areas containing
swamps and dry, wooded uplands, based solely on the timing of when
the data was collected. Moreover, even if acquired at the optimal time
in the growing season, results may still be significantly biased because
of the polarization and noise floor of the sensor. Herein, we have
demonstrated that this bias can be reduced by including multiple dates
and/or other ancillary data like DEMs and their derivatives. However,
it is notable that these and other biases may not always be readily
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Fig. 9. Example classification results (one model run per time series) based on intensity derivatives (HH, HV, VH and/or VV polarization) for a select number of single SAR images
(dates), trained using all 400 samples per class. For comparison, dates for the Radarsat-2 and Sentinel-1 time series correspond to the closest acquisitions to (1) the Alos-2 image
acquired on May 20th, and (2) the Alos-2 image acquired on August 3rd.
apparent if: (1) results are not compared to other SAR sensors, and
(2) if the data used for model training and validation are similarly
biased toward sites where models perform similarly regardless of the
SAR data that is used. For example, it is theorized that models may
perform similarly in areas with relatively open and simple canopy
structures. Therefore, having HH polarized data with a better NESZ,
and or increasing polarimetric diversity may only offer advantages
under certain scenarios.

Future work is needed to better understand the combined impact of
SAR sensor and environmental characteristics for mapping and moni-
toring change in stands dominated by coniferous and mixed coniferous–
deciduous trees and/or shrubs. Moreover, since all the swamps in this
study area contained at least some open water there is also need to
better understand the extent to which diffusion at the ground due to the
presence of hummocks, sphagnum, and other vegetation, may result in
an underestimation of the extent of swamps.

7. Conclusions

The study findings challenge the common preconception that longer
wavelengths are preferred for distinguishing swamps from dry upland
13 
forests and shrublands. Close scrutiny is therefore needed when se-
lecting the type of SAR data that are used for a given application, or
to temper the interpretation of results against biases that may not be
readily apparent given limited and often biased training and validation
data. While we have shown that images acquired before leaf flush are
superior, we also found that including a DEM and its derivatives can
partially compensate for use of sub-optimal SAR data.
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Fig. 10. Shapley values for grouped sets of Radarsat-2 variables (by SAR acquisition date and by DEM, topographic wetness (TWI) and slope (SLP) together) to demonstrate their
relative importance to the independent overall accuracy (total bar height) of multiple Random Forest models (averaged across 100 runs). Shown above are all possible two-date
combinations, classified alone (top row) and with a DEM and derivatives (bottom row).
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Fig. 11. Shapley values for grouped sets of Sentinel-1 and Alos-2 variables (by SAR acquisition date and by DEM, topographic wetness (TWI) and slope (SLP) together) to
demonstrate their relative importance to the independent overall accuracy (total bar height) of multiple Random Forest models (averaged across 100 runs). For the Sentinel-1 time
series, only the three models with the highest and the three models with the lowest accuracies are shown for brevity, while all possible two-date combinations are shown for
Alos-2. Models above are for those classified alone (top row) and with a DEM and derivatives (bottom row).
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